
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Notes - Unit 7

INTERRUPTS AND EXCEPTIONS
 Interrupt: Event that requires the CPU to stop normal program execution and perform some service (called Interrupt

Service) related to the event. It can be generated externally (outside the chip), or internally (inside the chip).

IINNTTEERRRRUUPPTT SSEERRVVIICCEE
The figure below depicts how an Interrupt is serviced. The example uses the HCS12 with the external interrupt /IRQ. At a

time t1, an event (falling edge) occurs on the /IRQ pin of the HCS12. This is how the processor attends the Interrupt:

1. Store the PC value (Return Address) and CPU Registers (Y,X,B,A,CCR) on the Stack.

2. Identify the source of the Interrupt. In the HCS12, this is akin to get the Vector Address. The subroutine that executes the
service related to the interrupt is called the Interrupt Service Routine. The starting address of the Interrupt Service Routine

is stored in a particular memory location in the HCS12, this location is known as the Vector Address.
3. Get the Interrupt Vector: This is the starting address of the Interrupt Service Routine (ISR). There is an Interrupt Vector

for each type of interrupt. Interrupt Vectors are stored in a table called Interrupt Vector Table.
4. Execute the Interrupt Service Routine (ISR).

5. Pull CPU Registers (CCR,A,B,X,Y) and PC from the Stack.

6. Return to main program, specifically to the Return Address.

0xFFFE

...

main: lds #$4000

ldaa #$7A

movb #$8A,$1000

ldab $1000

...

t1

IRQ

t1

myisr: inc $1000

...

...

rti

SP

[A]

[CCR]

[B]

[X]

[Y]

Return
Address

Return to
main program

Vector Vector Interrupt

Address Number Source

$FFFE 0 Reset

$FFFC 1 Clock monitor failure reset

...

$FFF6 4 swi

$FFF4 5 /XIRQ

$FFF2 6 /IRQ

...

$FFCC 25 PORTH

...

$FF8C 57 PWM Emergency Shutdown

 Identify source of the interrupt find the Vector Address

 Get Interrupt Vector from
Interrupt Vector Table

0xFFFC

...

0xFFF2

...

myisr
Address

SP

SP

SP

Interrupt Received at t1

Store PC and CPU
registers in the Stack

INTERRUPT VECTOR MAP (HCS12)

Interrupt
Vector

INTERRUPT

VECTOR TABLE

INTERRUPT

SERVICE

ROUTINE

Execute
ISR

Restore CPU registers
and PC, i.e., pull
values from Stack

MAIN PROGRAM

HCS12

IRQ

Vector
Address

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

MMAASSKKAABBIILLIITTYY

 Maskable Interrupts: The CPU has the option of disabling some or all these interrupts. When the interrupt is disabled,
the CPU will ignore it. When the interrupt is enabled, the CPU must service this interrupt. The current instruction is
completed before servicing the interrupt.
To allow more flexibility, a microprocessor usually provides a global and local interrupt masking capability. We can disable
all the maskable interrupts by configuring the global mask bit. We can also selectively enable certain interrupts while
disabling others interrupts. This is achieved by providing each interrupt source an enable bit. Then, we only enable the
interrupts that we want to be serviced.

 Non-maskable Interrupts: The CPU cannot ignore these interrupts and must service them. In some cases, the CPU
may start interrupt service without completing the current instruction.

 Interrupt Vector Table: In the HCS12 processor, this is located in memory positions from $FF8C to $FFFF.

 Interrupt Vectors: They are programmable in the HCS12. In other processors (e.g., Intel 8051), they are fixed. In other
processors (e.g., Intel x86), we first read an index that allows the processor to read the corresponding Interrupt Vector.

 Interrupt Priority: When there are multiple sources, several interrupts might be pending at the same time. The CPU is
required to prioritize all interrupt sources. An interrupt with higher priority always receives service before interrupts with
lower priorities. The HCS12 prioritize interrupts in hardware. In processors that do not prioritize interrupts in hardware,
software can be written to handle priority of interrupts. In most processors, interrupt priorities are not programmable.

IINNTTEERRRRUUPPTT PPRROOGGRRAAMMMMIINNGG

1. Initialize Interrupt Vector Table: Provide the starting address of the ISRs that the program needs to service.
2. Write Interrupt Service Routine: The Service Routine might not return to the interrupted program in some cases (e.g.:

software error such as a divide by zero). In the HCS12, the rti instruction is used to return to the interrupted program.

 Enable interrupts: Globally and locally. Before the HCS12 starts to service an interrupt, it disables the global mask bit
(bit I of CCR) by setting it to 1. When the HCS12 returns from an ISR, it enables the global mask bit by setting it to 0.

RREESSEETTSS

 Before a computer can operate properly, the initial values of some CPU registers and I/O control registers must be

established. A reset mechanism allows to establish these initial values.
 Typically, there are at least two types of reset in a microprocessor:
 Power-on-Reset (POR): It establishes initial values of registers and initializes all I/O interface chips when power to the

microprocessor is turned on.
 Manual reset: Similar to the Power-on-Reset, but it is triggered by the user at any time. It allows the computer to get

out of most error conditions. The processor restarts the main program after a reset.
 Reset Service Routine: Subroutine that executes the service related to the Reset. The Reset Service Routine is stored in

the read-only memory of all microprocessors so that it is always ready for execution. At the end of the service routine,
control is transferred to the monitor program or the operating system. The starting address of the Reset Service Routine is
called the Reset Vector.

 Reset Vector: It is a fixed value or it is stored at a fixed location (in the HCS12, the Reset Vector is stored at $FFFE).

 Resets are non-maskable.
 Resets exhibit several properties that resemble non-maskable Interrupts. For example, the Interrupt Vector Table of the

HCS12 includes the Reset Vectors. There is also a Reset Service Routine. However, the Reset Service does not save any
registers in the Stack, as a Reset initializes those register values. Also, after the Reset is serviced, the program restarts
(unlike an interrupt, where the ISR usually returns to the interrupted program).

HCS12 EXCEPTIONS (INTERRUPTS AND RESETS)
MMAASSKKAABBLLEE IINNTTEERRRRUUPPTTSS

 We can mention: The /IRQ pin (PE1 pin in the MC9S12DG256), all peripheral function interrupts (e.g., PORTH, PORTP).

 I bit of CCR: Global mask of all maskable interrupts. If I=1, all maskable interrupts are disabled. If I=0, all maskable

interrupts are enabled. At power on, or after a manual reset, the bit I is set to 1 (maskable interrupts disabled).
 Important: Before servicing an interrupt, I is set o 1, disabling all other maskable interrupts during the ISR. When

terminating an ISR, the I bit is restored (usually set to 0 to enable further maskable interrupts).

 cli Sets I to 0 (enables maskable interrupts) sei sets I to 1 (disables all maskable interrupts)

INTERRUPT PRIORITY
 The Interrupt Vector Map (see Table 5.1 in DDeevviiccee UUsseerr GGuuiiddee) in the figure shows the default priority in the HCS12. The

higher the address, the higher the priority (or the higher the vector number, the higher the priority)
 The priorities of the Resets and non-maskable interrupts are nonprogrammable. For the maskable interrupts, we can

program one priority to be the highest.
 HPRIO register ($001F): It sets the priority of maskable interrupts. We write the lower byte of the Vector Address of the

Interrupt we want to prioritize.

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/Lab/MC9S12DT256_Device%20User%20Guide.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

 The interrupt produced by the /IRQ pin is set to the highest priority by default.

 For example, if we want to elevate the interrupt produced by PORTH to the highest priority, we first identify its vector

address (0xFFCC). Then we set HPRIO = 0xCC (lower byte of the Vector Address).

 For example, if we want to elevate the Real Time Interrupt to the highest priority, we first identify its vector address

(0xFFF0). Then we set HPRIO = 0xF0 (lower byte of the Vector Address).

/IRQ PIN INTERRUPT

 /IRQ pin: External maskable interrupt signal. We can configure the triggering method as well as the Local Enable. This is

allowed by the INTCR ($001E) register (/IRQ Interrupt Control Register):

 IRQE bit of INTCR: Selects the triggering method. If IRQE=1 A falling edge on the /IRQ pin causes the interrupt (edge

sensitive interrupt). If IRQE=0 A low level causes the interrupt (low sensitive interrupt).

Edge sensitive interrupt: Here, the user does not have to worry about how long the /IRQ is low. This approach might not

be appropriate for a noisy environment as any noise spike could cause a falling edge.
Low sensitive interrupt: This is useful if we want to connect multiple external interrupt sources to this pin. The user of this

method must make sure that the /IRQ signal is de-asserted (goes high) before the processor exits the ISR.

 IRQEN bit of INTCR: Local interrupt enable. If IRQEN=1 The /IRQ pin interrupt is enabled. If IRQEN=0 The /IRQ

pin interrupt is disabled. After a reset, this bit is set to 1 (/IRQ interrupt enabled)

INTCR ($001E):
Read:

Write:

0
IRQENIRQE

0 0 0 0 0

7 6 5 4 3 2 1 0

HPRIO ($001F):

Vector Vector Interrupt HPRIO value to set

Address Number Source to highest priority

$FFFE 0 Reset ---

$FFFC 1 Clock monitor failure reset ---

$FFFA 2 COP failure reset ---

$FFF8 3 Unimplemented instruction trap ---

$FFF6 4 swi ---

$FFF4 5 /XIRQ ---

$FFF2 6 /IRQ $F2

$FFF0 7 Real-time interrupt $F0

$FFEE 8 Enhanced capture timer channel 0 $EE

$FFEC 9 Enhanced capture timer channel 1 $EC

...

$FFE0 15 Enhanced capture timer channel 7 $E0

$FFDE 16 Enhanced capture timer overflow $DE

...

$FFD2 22 ATD0 $D2

$FFD0 23 ATD1 $D0

$FFCE 24 PORT J $CE

$FFCC 25 PORT H $CC

...

$FFB8 35 Flash $B8

$FFB6 36 CAN0 wake-up $B6

$FFB4 37 CAN0 errors $B4

$FFB2 38 CAN0 receive $B2

$FFB0 39 CAN0 transmit $B0

...

$FF96 52 CAN4 wake-up $96

$FF94 53 CAN4 errors $94

$FF92 54 CAN4 receive $92

$FF90 55 CAN4 transmit $90

$FF8E 56 Port P Interrupt $8E

$FF8C 57 PWM Emergency Shutdown $8C

0xFFFE

0xFFFC

0xFFFA

...

M
a
sk

a
b
le

In
te

rr
u
p
ts

N
o
n
-a

sk
a
b
le

In
te

rr
u
p
ts

a
n
d
 R

e
se

ts

0xFF8C

0xFF8E

0xFFF8

0xFFF6

0xFFF4

0xFFF2

0xFFF0

0xFFEE

INTERRUPT

VECTOR TABLE

N
o
n
-m

a
sk

a
b
le

 I
n
te

rr
u
p
ts

a
n
d
 R

e
se

ts

M
a
sk

a
b
le

In
te

rr
u
p
ts

Read:

Write:

0
PSEL1PSEL2PSEL3PSEL4PSEL5PSEL6PSEL7

P
R

IO
R

IT
Y

7 6 5 4 3 2 1 0

0xFFEC

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

4 Instructor: Daniel Llamocca

Examples:

 ASM Code: unit7a.asm. This Assembly program increases an 8-bit count on PORTB each time the /IRQ ISR is serviced.

The count starts at zero. The /IRQ interrupt is configured for falling edge.

 Initialize Interrupt Vector Table: This is done by ORG $FFF2 followed by dc.w IRQISR. IRQISR is the label that

represents the starting address for the ISR of the /IRQ interrupt.

 Write Interrupt Service Routine: Here, the ISR is called IRQISR. It consists of 3 instructions. The first two increments
the count and writes it on PORTB. The last instruction rti returns to the main program.

 Enable Interrupts: The cli instruction enables the Global Mask Bit (I in CCR) by clearing it. Locally, we configure the

register INTCR ($001E) to enable /IRQ and making it respond to a falling edge: movb #$C0, INTCR.

 INCLUDE 'derivative.inc'

ROMStart EQU $4000

; variable/data section

 ORG RAMStart

count ds.b 1

; code section

 ORG ROMStart

Entry:

_Startup: LDS #RAMEnd+1 ; initialize the stack pointer

 CLI ; bit I of CCR: Global Mask of all maskable interrupts

 ; I/O Configuration: Dragon12-Light Board

 movb #$FF, DDRB ; set Port B to be all output

 movb #$00, DDRH ; set Port H to be all input

showDIPSW: ; Setting the IRQ interrupt vector to address IRQISR

 ; movw #IRQISR, $FFF2 ; Not allowed by CodeWarrior: use ORG and dc.w instead (see below)

 movb #$C0, INTCR ; Local enable for /IRQ. Falling edge triggers /IRQ interrupt

 clr count

 movb count, PORTB

forever: nop

 bra forever; wait indefinitely for IRQ pin interrupt

; **************************

; Interrupt Service Routine

; **************************

IRQISR: inc count

 movb count, PORTB

 rti

 ;**

 ;* Interrupt Vectors *

 ;**

 ORG $FFF2

 DC.W IRQISR ; The IRQ Vector is the address 'IRQISR'

 C Code: unit7b.c. The following C program does the same as the previous ASM Code:

 Initialize Interrupt Vector Table: This is taken care of by the following code, where the starting address of the ISR

(called irqISR) will be stored at 0xFFF2 (which is the vector address of the /IRQ interrupt)
#pragma CODE_SEG DEFAULT /* change code section to DEFAULT (for Small Memory Model, this is $C000) */

// Interrupt Vector Table

typedef void (*near tIsrFunc)(void); // keyword in HCS12 so that the following is in nonbanked memory

const tIsrFunc _vect[] @0xFFF2 = { // 0xFFF2 is the address to store the IRQ interrupt vector

 /* Interrupt table */

 irqISR // Real Time Interrupt

};

 Write Interrupt Service Routine: The ISR is called irqISR and it is function in C. The interrupt keyword identifies it

as an ISR. As this function cannot have return values, the variables affected need to be global (count is a global

variable). This function increments the count and writes it on PORTB, and then returns to the main program:
/* Interrupt Service Routine for /IRQ pin */

 interrupt void irqISR(void) // 'Interrupt' keyword: tells the C compiler that this function is an ISR

 {

 count = count + 1;

 PORTB = count; // the rti instruction is automatically included at the end

 }

 Enable Interrupts: The EnableInterrupts function enables the Global Mask Bit (I in CCR) by clearing it. Locally, we

configure the register INTCR to enable /IRQ and to configure it as a falling edge: INITCR=0xC0.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

5 Instructor: Daniel Llamocca

#include <hidef.h> /* common defines and macros */

#include "derivative.h" /* derivative-specific definitions */

/* Program: Increases an 8-bit count on the LEDs every time a falling edge on IRQ pin is received. */

/* Global variables */

unsigned char count;

/* On CODE_SEG: This is a 'pragma' (directive) that specifies where the function segment is allocated.

 It affects function declarations and definitions

#pragma CODE_SEG NON_BANKED --> Functions after this directive are stored in the NON_BANKED area

 (non-expanded memory). In particular, we are storing the ISRs there

#pragma CODE_SEG DEFAULT --> Places the functions in the default code section

*/

/* List of functions */

#pragma CODE_SEG NON_BANKED

/* Interrupt Service Routine for /IRQ pin */

 interrupt void irqISR(void) // 'Interrupt' keyword: tells the C compiler that this function is an ISR

 {

 count = count + 1;

 PORTB = count;

 // the rti instruction is automatically included at the end

 }

 #pragma CODE_SEG DEFAULT /* change code section to DEFAULT (for Small Memory Model, this is $C000) */

 // Interrupt Vector Table

 typedef void (*near tIsrFunc)(void); // keyword in HCS12 so that the following is in nonbanked memory

 const tIsrFunc _vect[] @0xFFF2 = { // 0xFFF2 is the address to store the IRQ interrupt vector

 /* Interrupt table */

 irqISR // Real Time Interrupt

 };

void main(void) {

 EnableInterrupts; // asm("cli") // Enables all maskable interrupts

 INTCR = 0xC0;

 count = 0;

 DDRB = 0xFF;

 PORTB = count;

 for (;;); // infinite loop that waits for an interrupt

}

PORTH INTERRUPT

 PORTH interrupt: External edge-sensitive maskable interrupt. We can configure the triggering method as well as the Local

Enable. This is allowed by the PIEH ($0026) register (PORTH Interrupt Enable Register) and the PPSH ($0025) register

(PORTH Polarity Select Register). In addition, the register PIFH ($0027) register (PORTH Interrupt Flag Register) allows

us to monitor whether there has been an active edge in a particular PORTH pin.

 PIEH: This register enables or disables on a per pin basis the edge sensitive external interrupt associated with PORTH. To

determine which bit caused the interrupt, the user needs to read the PIFH register.

Example: PIEH = 0x81. Bits 7 and bit 0 of PORTH will cause an interrupt.

 PPSH: This register selects the polarity on a per pin basis of an interrupt source. PORTH is only edge-sensitive. We can

configure individual bits of PORTH to respond to either a falling edge or a rising edge. This is done by writing a 0 (falling

edge) or 1 (rising edge) on the corresponding PPSH bits. If one or more edges are detected in the corresponding bits

configured at PPSH, a ‘1’ is written into the corresponding bit of the PIFH register.

Example: PPSH = 0x42. Bits 6 and 2 are configured to respond to a rising edge. The rest as falling edge.

PIEH ($0026):
Read:

Write:
PIEH7

7 6 5 4 3 2 1 0

PIEH6 PIEH5 PIEH4 PIEH3 PIEH2 PIEH1 PIEH0

PPSH ($0025):
Read:

Write:
PPSH7

7 6 5 4 3 2 1 0

PPSH6 PPSH5 PPSH4 PPSH3 PPSH2 PPSH1 PPSH0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

6 Instructor: Daniel Llamocca

 PIFH: If an edge is detected on a PORTH pin and if the edge matches the one configured in the corresponding PPSH bit,

the corresponding bit in PIFH is set to 1. An interrupt occurs if the corresponding enable bit in PIEH is 1 (enabled).

In the corresponding Interrupt Service Routine, we need to clear the corresponding PIFH bit by writing a ‘1’ on that bit.

Otherwise, the interrupt will be activated forever.

Example: Using bit 3 of PORTH to issue an interrupt when a falling edge is detected.

1. We write 0x08 on PIEH (enabling the interrupt on pin 3 of PORTH).

2. We write 0xF7 on PPSH (configuring pin 3 of PORTH to respond to falling edges).

3. In an interrupt in PORTH occurs, the state of PIFH will be 0x80. Before finishing the interrupt service, we must clear

the corresponding bit on PIFH by writing 0x08 on it (this will make PIFH = 0x00)

Example:

 C Code: unit7c.c. This C program increases an 8-bit count on PORTB each time the PORTH ISR is serviced. The count

starts at zero. We are only using bit0 of PORTH to be the source of the interrupt when a falling edge is detected.

 Initialize Interrupt Vector Table: This is taken care of by the following code, where the starting address of the ISR

(called porthISR) will be stored at 0xFFCC (which is the vector address of the PORTH interrupt)

#pragma CODE_SEG DEFAULT /* change code section to DEFAULT (for Small Memory Model, this is $C000) */

// Interrupt Vector Table

typedef void (*near tIsrFunc)(void);

const tIsrFunc _vect[] @0xFFCC = { // 0xFFCC is the address to store the PORTH interrupt vector

 /* Interrupt table */

 porthISR // PortH Interrupt

 };

 Write Interrupt Service Routine: The ISR is called porthISR and it is function in C. The interrupt keyword identifies

it as an ISR. As this function cannot have return values, the variables affected need to be global (count is a global

variable). This function increments the count and writes it on PORTB, and then returns to the main program:

/* Interrupt Service Routine for /IRQ pin */

interrupt void porthISR(void)

{ // the Interrupt occurs when PORTH0 has a falling edge. Bit 0 PIFH is set to 1 if this happens

 count = count + 1;

 PORTB = count;

 PIFH = 0x01; // clears flag of bit 0 (activated because of the falling edge)

 // When an edge is detected in PORTH, the corresponding bit in PIFH is set to 1, and

 // then the interrupt occurs. If this bit is not cleared, the ISR will run indefinitely

}

 Enable Interrupts: The EnableInterrupts function enables the Global Mask Bit (I in CCR) by clearing it. Locally, we

configure the register PIEH to enable PORTH interrupt (on bit 0): PIEH = 0x01. We also configure the register PPSH

to detect falling edges: PPSH=0x00.

void main(void) {

 EnableInterrupts; // asm("cli") // Enables all maskable interrupts

 DDRH = 0x00;

 DDRB = 0xFF;

 // Setting bit 0 of PORTH as the Interrupt source

 PIEH = 0x01; // Port H Interrupt Enable Register

 PPSH = 0x00; // Falling edge on the bit 0 of PORTH. If PPSH = 0x01 -> Rising edge

 count = 0;

 PORTB = count;

 for (;;); // infinite loop that waits for an interrupt

}

PIFH ($0027):
Read:

Write:
PIFH7

7 6 5 4 3 2 1 0

PIFH6 PIFH5 PIFH4 PIFH3 PIFH2 PIFH1 PIFH0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

7 Instructor: Daniel Llamocca

NNOONN--MMAASSKKAABBLLEE IINNTTEERRRRUUPPTTSS

 These interrupts are always serviced. The global mask I has no effect on these interrupts. So, a non-maskable interrupt

can be serviced during the ISR of a maskable interrupt.

/XIRQ PIN INTERRUPT
 This non-maskable interrupt is activated if a low-level is detected on the /XIRQ pin (PE0 pin in the MC9S12DG256).

 During a reset, both the X and I bits in the CCR are set to 1. I=1 disables all maskable interrupts. X=1 disables the

nonmaskable interrupt /XIRQ. After a reset, X and I remain set to 1.

 Likewise, when a non-maskable interrupt is serviced, both the X and I bits are set to 1. This prevents other interrupts from
being recognized during the ISR. The rti instruction at the end of the ISR restores X and I to their pre-interrupt state.

 Enabling /XIRQ Interrupt: After a reset, note that X is disabled (X=1). We start with /XIRQ disabled because enabling

the /XIRQ interrupt before a system is fully powered and stable can lead to spurious interrupts. We can then enable the

/XIRQ interrupt by setting X to 0 (e.g.: andcc #$BF). Once /XIRQ has been enabled, we CANNOT disable it. Hence,

/XIRQ is considered a non-maskable interrupt.

Example:
 ASM Code: unit7d.asm. This Assembly program increases an 8-bit count on PORTB every 250 ms. Each time the

/XIRQ interrupt occurs, the /XIRQ ISR will set the count to $FF. The count starts at zero.

 Initialize Interrupt Vector Table: This is done by ORG $FFF4 followed by dc.w isrXIRQ. isrXIRQ is the label that

represents the starting address for the ISR of the /XIRQ interrupt.

 Write Interrupt Service Routine: Here, the ISR is called isrXIRQ. It sets the count to $FF and writes it on PORTB. The

last instruction rti returns to the main program.

 Enable Interrupt: Even though it is a non-maskable interrupt, we need to enable it: andcc #$BF (X0). Note that

we cannot disable it afterwards.

 INCLUDE 'derivative.inc'

ROMStart EQU $4000

 ORG RAMStart

count ds.b 1

 ORG ROMStart

Entry:

_Startup: LDS #RAMEnd+1 ; initialize the stack pointer

 movb #$FF, DDRB ; set Port B to be all output

 movb #$00, DDRH ; set Port H to be all input

 andcc #$BF; X <- 0. ; /XIRQ enabled. Once enabled, it cannot be disabled

 clr count

 ; Loop that increases a count from $00 to $FF every 250 ms.

forever: inc count

 ldaa #$FA; A <- 250

 bsr asm_mydelay; Subroutine that executes a delay of A=250 ms

 movb count, PORTB; Display 'count' on the LEDs

 bra forever;

; SUBROUTINE asm_mydelay: Input: Contents of Register A. Outputs: none

; -----------------------

asm_mydelay: cmpa #$00; If A=0, we finish immediately

 beq next

; 1 ms loop with #400 on X for the 4 MHz bus speed.

oloop: ldx #2400 ; #2400 (by default, it seems that the bus speed is set to 24 MHz)

iloop: psha ; 2 cycles

 pula ; 3 cycles

 nop ; 1 cycle

 nop ; 1 cycle

 dbne X,iloop; ;3 cycles

 dbne A, oloop; 3 cycles

next: rts

 ; Interrupt Service Routine:

; -------------------------

isrXIRQ: movb #$FF, count

 movb count, PORTB

 rti

; Interrupt Vectors

 ORG $FFF4

 DC.W isrXIRQ ; The XIRQ Interrupt Vector is the address 'isrXIRQ'

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

8 Instructor: Daniel Llamocca

UNIMPLEMENTED CODE TRAP

 The OPCODE specifies the operation to be performed and the addressing modes used to access the operand(s). The
OPCODE in the HCS12 consists of 1 or 2 bytes. Here we refer to Table A-2 in the HHCCSS1122 CCPPUU RReeffeerreennccee MMaannuuaall RReevv.. 44..00.

 The first byte is specified in Page 1 of Table A-2. If the first byte is $18, it means that the OPCODE requires 2 bytes. The
second byte is specified in Page 2 of Table A-2.

 For the second byte, we should expect 256 combinations. However, in the HCS12, only 54 out of 256 are actually used.
The other 202 are unused numbers, and are not recognized as proper OPCODES (greyed out values in Table A-2)

 So, if an instruction used 2 bytes of OPCODE, and if the 2nd byte is an unused number, an interrupt is issued. This is called
the Unimplemented Code Trap. All 202 unused 2nd bytes will cause an interrupt that share the same interrupt vector
address: $FFF8. The HCS12 uses the next address after an unimplemented page 2 OPCODE as a return address.

 Note that the X bit does not have any effect on this interrupt. It is possible to activate this interrupt while in an ISR of a

maskable or a non-maskable interrupt (including /XIRQ), though not recommended.

SOFTWARE INTERRUPT INSTRUCTION (SWI)
 Execution of this instruction causes an interrupt without an interrupt request signal. Execution of SWI disables all maskable

interrupts (I0). The value of I is restored when exiting the service routine (rti instruction).

 swi is commonly used for Debug operations. Breakpoints are inserted in a Program by inserting swi after a particular

instruction. The swi ISR then displays information about instruction execution. The return address points to the next

address after the OPCODE.
 Note that the X bit does not have any effect on this interrupt. It is possible to activate this interrupt while in an ISR of a

maskable or a non-maskable interrupt (including /XIRQ), though not recommended.

 CodeWarrior: The Debugger uses ‘swi’ to stop program execution at any time, and to execute the instructions line by

line. We cannot use ‘swi’ in the CodeWarrior Debugger, otherwise there would be no way to have a break in Debug Mode.

RREESSEETTSS

The X, I bits have no effect on resets. Each reset has a separate vector. There are four possible sources of reset:
 Power-On-Reset (POR): The HCS12 incorporate circuitry to detect a possible transition in the VDD supply and initialize

the device, generally by asserting the reset signal to the internal circuits. The signal is typically released after a delay that

allows the device clock generator to stabilize.
 External Reset (/RESET manual pin): The Microcontroller Unit (MCU) distinguishes between internal and external resets

by sensing how quickly the signal on the /RESET pin rises to logic level 1 after it has been asserted (set to 0).
When any of the four reset conditions in reached, an internal circuitry drives the /RESET signal low for a number or cycles,
then releases. A number of cycles later, the MCU samples the state of the signal applied to the /RESET pin. If the signal is
still low, an external reset (manual) has occurred. If the signal is high, reset is assumed to have been initiated internally by
either the COP (Computer Operating Properly) system or the Clock Monitor.

 COP (Computer Operating Properly) Reset: HCS12: The MCU includes a COP system to help protect against software
failures. When the COP is enabled, software must write a particular code sequence ($55 followed by $AA) to the ARMCOP

register to keep the COP from timing out and generate a reset. This sequence must be completed prior to the COP timeout
period to avoid a reset. COPCTL register: Controls functioning and timeout period configuration.

 Clock monitor reset: The Clock Monitor circuit uses an internal RC circuit to determine whether clock frequency is above
a predetermined limit. If clock frequency falls below the limit when the clock monitor is enabled, a reset occurs. To

enable/disable the Clock Monitor, one must use the bit 7 (CME) of the PLLCTL (CRG PLL Control Register) register.

EEXXAAMMPPLLEE:: IINNIITTIIAALLIIZZIINNGG AANN IINNTTEERRRRUUPPTT VVEECCTTOORR TTAABBLLEE FFOORR TTHHEE HHCCSS1122

HCS12 interrupts start at $FF8C. You need to enable the interrupts and write the corresponding ISRs. If only some interrupts

are used, you can list all interrupts and then write a single ISR (only one instruction: rti) for the unused interrupts.
ORG $FF8C

dc.w isrPWM ; PWM Emergency Shutdown

...

dc.w isrPORTH ; PORTH Interrupt

dc.w isrPORTJ ; PORTJ Interrupt

dc.w isrATD1 ; ATD1 Interrupt

dc.w isrATD0 ; ATD0 Interrupt

...

dc.w isrRTI ; Real-Time Interrupt

dc.w isrIRQ ; /IRQ interrupt

dc.w isrXIRQ ; /XIRQ interrupt

dc.w isrSWI ; Software interrupt

dc.w isrTRAP ; Unimplemented instruction trap

dc.w isrCOP ; COP Failure reset

dc.w isrCLKMON ; Clock Monitor

dc.w Entry ; Reset. Entry: ASM initial address

#pragma CODE_SEG DEFAULT

typedef void (*near tIsrFunc)(void);

 const tIsrFunc _vect[] @0xFF8C = {

 isrPWM, // PWM Emergency Shutdown

 ...

 isrPORTH, // PORTH Interrupt

 isrPORTJ, // PORTJ Interrupt

 isrATD1, // ATD1 Interrupt

 isrATD0, // ATD0 Interrupt

 ...

 isrRTI, // Real-Time Interrupt

 isrIRQ, // IRQ interrupt

 isrXIRQ, // /XIRQ interrupt

 isrSWI, // Software interrupt

 isrTRAP, // Unimplemented instruction trap

 isrCOP, // COP Failure reset

 isrCLKMON, // Clock Monitor

 isrReset, // Reset

 };

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/HCS12%20CPU%20Reference%20Manual_S12CPUV2.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

9 Instructor: Daniel Llamocca

REAL TIME INTERRUPT

CLOCK AND RESET GENERATION (CRG) BLOCK
 This block generates the COP reset, the Clock Monitor Reset, the Real Time Interrupt, and the system clocks.
 In the Dragon12-Light Board, the crystal frequency is 8 MHz. The Oscillator Clock (OSCCLK) generated by the CRG Block

has been set to have the same frequency as the crystal frequency. Thus, OSCCLK = 8 MHz.
 The CRG Block contains a Phase-Locked-Loop (PLL) circuit whose frequency is given by:

𝑃𝐿𝐿𝐶𝐿𝐾 = 2 × 𝑂𝑆𝐶𝐶𝐿𝐾 ×
(𝑆𝑌𝑁𝑅 + 1)

(𝑅𝐸𝐹𝐷𝑉 + 1)

where SYNR and REFDV are I/O registers.

 The System Clock SYSCLK (also called Core clock) generated by the CRG Block can be selected (via CLKSEL register) to be

either PLLCLK or OSCCLK. Usually, PLLCLK is preferred.
 The E-clock (or bus clock) is equal to SYSCLK/2.
 Given the OSCCLK frequency (8 MHz in the Dragon12-Light Board), we can modify the Bus Clock (up to 24 MHz). By

default, if the Dbug-12 Monitor is used, the Bus Clock is 4 MHz. If the Serial Monitor is used (CodeWarrior), the Bus Clock
is 24 MHz).

Example: We want to modify our Bus Speed (or bus clock) from 4 MHz to 24 MHz, we must do:

 E-clock = bus speed = SYSCLK/2 = 24 MHz SYSCLK 48 MHz.

 For 24 MHz bus speed, we need SYSCLK=PLLCLK = 48 MHz. Since OSCCLK is 8 MHz, we have:

48 = 2 × 8 ×
(𝑆𝑌𝑁𝑅 + 1)

(𝑅𝐸𝐹𝐷𝑉 + 1)

 There are many solutions. For example SYNR=2, REFDV=0. To program it, we need to do:

a. Set SYNR to 2: movb #$02, SYNR

b. Set REFVD to 0: movb #$00, REFDV

c. Make SYSCLK=PLLCLK: movb #$80, CLKSEL; bit 7 of CLKSEL selects between PLLCLK and OSCCLK

d. Disable clock monitor, enable PLL, set automatic bandwidth control, disable RTI and COP in pseudo-stop:
movb #$60, PLLCTL

e. Wait until PLL locks into the target frequency (i.e., when CRGFLG(3) is 1): wait: brclr CRGFLG, $08, wait

REAL TIME INTERRUPT (RTI)
 This is an important maskable interrupt. It generates a periodic interrupt. The frequency of the interrupt is given by:

𝑂𝑆𝐶𝐶𝐿𝐾
𝑅𝑇𝐼𝐶𝑇𝐿⁄

Where RTICTL is the CRG RTI control register. The RTICTL value is the divider (see Table 6.4 in the textbook)

 Global Mask: We need to enable it, i.e., make I=0.

 Local Enable: This is configured in CRGINT (CRG Interrupt Enable) register, bit 7 (called RTIE). If RTIE=1, RTI is enabled;

if RTIE=0, RTI is disabled. Also, if RTICTL(2..0)=000, RTI is disabled.

 CRGFLG (CRG Flag) Register: The bit 7 is set to 1 at the end of an RTI period. If this bit is 1 and if RTIE=1, an interrupt is

generated. In the ISR of RTI, we must clear this bit by writing 1: movb #$80, CRGFLG, otherwise the interrupt will still

be active after exiting the ISR.

Example:

 ASM Code: unit7d.asm. This Assembly program increases an 8-bit count on PORTB every 250 ms. RTI generates an

interrupt at a frequency of 7.63 Hz (about every 130 ms). Each time the RTI interrupt occurs, we flash the RGB LED as

yellow and checks whether PORTH=$8E. If it is, we do not exit the ISR (the count will be paused). If not, we exit the

interrupt. The count starts at zero.

 Initialize Interrupt Vector Table: We use isrRTI as the label that represents the ISR starting address:
ORG $FFF0
dc.w isrRTI

 Write Interrupt Service Routine: The ISR is called isrRTI. We clear the bit 7 of CRGFLG register here:

movb #$80, CRGFLG.

 Enable Interrupts: The cli instruction enables the Global Mask Bit (I in CCR) by clearing it. Locally, we configure the

register CRGINT to enable RTI (movb #$80, CRGINT). We also configure RTICTL=$7F so that it generates an

interrupt every 130 ms, i.e. with a frequency of: 8 𝑀𝐻𝑧
16 × 216⁄ = 7.629 𝐻𝑧.

